Krylov Methods for Nonlinear Eigenvalue Problems

نویسندگان

  • Elias Jarlebring
  • Axel Ruhe
چکیده

We present two generalisations of the Krylov subspace method, Arnoldi for the purpose of applying them to nite dimensional eigenvalue problems nonlinear in the eigenvalue parameter. The rst method is called nonlinear rational Krylov subspace and approximates and updates the projection of a linearised problem by nesting a one-sided secant method with Arnoldi. The second method, called nonlinear Arnoldi, iteratively solves a sequence of projected nonlinear problems and has a convergence behaviour similar to residual inverse iteration. Both algorithms are successfully applied to one problem from modelling of uid-structure interaction and another from vibration analysis of objects with non-proportional damping. Numerical experiments with the two algorithms indicate large di erences mostly in favour of nonlinear Arnoldi, in both speed of convergence and robustness. Krylovmetoder för ickelinjära egenvärdesproblem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection Methods for Nonlinear Sparse Eigenvalue Problems

This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.

متن کامل

Nleigs: a Class of Robust Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems∗

A new rational Krylov method for the efficient solution of nonlinear eigenvalue problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and W. Michiels, SIAM J. Sci....

متن کامل

Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems

We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...

متن کامل

Prediction of critical boundaries in two-parameter nonlinear eigenvalue problems

Prediction of critical boundaries (i.e. curves of singular points) in two-parameter nonlinear eigenvalue problems is considered. A generalization of the Krylov subspace for the one-parameter linear eigenvalue problem to the two-parameter case, suitable for the prediction of critical boundaries, is introduced. Methods for the eecient computation of the solution surface are developed. A case of t...

متن کامل

Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods

We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003